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Abstract

yper~trcambines are a generalizadion to sccond order tensor ficlds of the oo n.
Conal streamblines used an vector ficld viswalization. s opposed to pont weons common!y
used o reswdlizing tensor ficlds, hyperstreambmes form o continuous representalion o f
the complite fonsoranformation wlong a three-domenswonal path. This technigue o5 s il
o vesuwdlizing both symnetrie and wnsymmelrie three-donenseonal tensor data, Sersrdd
cramples of tensor fiold viswalezation o solvd maderiads and fludd flows are prooeded
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1 Introdnuction

Sy s e Do e carrent by i compie el D e Gl veetor o o
Dt S U Lotk ol proner tensor display terbiiigues. Pooviding o ‘

ceethodoloos v csadizing 321 cecond order rensor data e Toad to e Tnsiodies T
problemss Second crder tonsor Helds are Dindamentad ro many diseinlines ofepaineerae o
plovsical sciencess Steesses and strains nsoflds, for exampiesare tenzor Gobds, Totell v -
stresses.viscons siresses. rate-ofstraing and momentim cran<fors e all deserined Dy

of tensor data, Also. the steady-state Navier-Stokes eqnations deseribing gas tlows invode
cmly one guantity: a tensor feld catled maomentum thoe desisity, Table 1 alves the dofinition
of some common 3-D tensor fields, [t shows that rensor data are very rich Ininformation
coutent: they inchide diverse phvsical quantities siuch as pressiure, ginetic eneray don-it
mrass density, velocity, and derivatives of the veloeiny Beldl Visnalizing rensor fields provides
avcorrelation hetween rhese qnantities.

As aoresuadt of this wealth of ighly maltivariare tormation, tensor visualization o~
clidlenging euterprise. Indeed. a 3-D <econd order tonsor field T consists of a 3x3 arrav o
~catar funetions {1c ) ok = 203 defined over a 3-D domain s Independent visnadization o8
tliese wine finctions is possible but meaningless. This article presents a methodology hised
o1t the concept of a fiyperstreamiine, which is the simplest continuous fensor structure tha
ca be extracted from a tensor field (as opposed to wwanyv other sealar or coctor featiuress,

In rie next section, hyperstreamlines are introduced tor the particular case of s~y
wetrie tensor fields U = {7} whose individual components are related 1o each otiter by
o= for b= 10230 As seenin Table Tosvimervic ronsor flelds are very common o
thiid tow stadies. Thens a structural depiction of ~viunetrie tensor fields is derived fron
tHie represenration of a large number of hyperstreiniines. Finallv, a methodolagy 10 vis-
alize wosymrnetree tensor data is provided by encoding wn addirional vector field along the

trajecrory of the hvperstreamlines,

seful information about tensor tields can be found o i

ro
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C= o= e ratesolstraln tensor s
TS e | - VISCONS Stress tensor s
Cor o= pe =l Stress tensor s
‘ HTo= o= peore |- reversible momentiom Hax density renar -
; e =17 =~/ |- momentum Hux densiny ronsor <
: Vi wna atean AR piAMIA Tharang TRfivaiiews tniot Fe pem L eten ]
1 Tlamireesite tows tnare sy am 4 004l term inu asing the dvergzon e gl the ool
Fable 10 Tonsor fields in hard Hows. p = pressure. p = maas Jdensitv, o) and 0 = 0
component=. and 5 = viscositv. & is the Rronecker svmbol. a0 = unevionerrie. -

Svmmerric,
2 Symmetric tensor fields and hyperstreamlines

Svmmetrie tensor felds U = {U i} = {{ 7} ate very common in phyvsics and »oobneering
and their visnalization is an tmportant problem per se. Also. it Is & nocessary <iop oo
display of general nnsvimmetric daras which will be addressed in rhe Last seetion o 000
articie,

A svmmetric rensor U may be described by three orthosonad vector ield< Tudoo 0 U

fa ar overy point T three real elgenvalues A7 = 1,20 or 3 ordered accordine 1o

A > AT > A0

. . —i) T . . ‘
as well as three real and orthogonal unit eigenvectors 4" [1]. We consider the thiree oriliog-

onal vectors 70 given by
T = A N
Becaise of the particular ordering of the eigenvalues. we refor to T as the major o go-
t n =l J
> . . — : _
cector, T as the medium eigenveetor, and T as the minor eigenvector.

Visualizing U s fully equivalent to visualizing sinmltaneously the three vector fields 7
since they inelide all the amplitude information (the eigenvalnes AU and all the divect ool
information (the nnit eigenvectors T07) represented i marrix notation by the componien: -
I Partliermore, visualizing the three vectors 75 uilows one to understand the bhelsior

of the six independent components [ with little or wo training 2.
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Paving o Gt s e thiree vectars T ap ot te aor eS8 Lo ’ -
Senlese e ey TEDOPI AT IO v lovatlon bt i Chaemee e
reveal the nderiving conriniry of cle dira delds Por this monsons DieRsieom T e

; Col : ) M | P S S R e o . .
Jiold e sowhich are streamlines of one Gf e elgenvector Helds T Wh e vipnsirine o,

continuiry, terzor Held dnes ave only cector rcons and reprosear only paraliv b e

field 1this is analogons to representing w veetor Held by oxamining only one of s <oy

componeuntsi.

What Is more desicable 15 a Je fonsor Jeon that sopresents all the vonsar Diorin o

along a 3-D path i space orcequivalently, thar encodes woenutinnons disoribirion oneDipeiis

be vector potion of o ~strean e

along aoelven rragectory, For this purpase we woneralizae o
to the tenzor concept of a hyperstreamiine:

a ceometric primitive of finite size sweeps ddong oue of the eigenveector iicelds

T owhile stretehineg in othe transver<e plane under the combined action of e
i
1

two other orthogonal eigenvector fields. The surface obrained by linking 1he
stretelied primitives ar the different poinrs cdone the traSectory s callod q by
perstreamline and s color coded by means of a nser-detined Dimetion of the three

elvenvalues. eoneratly the amplitude of the loneiradinal eleenvalue,

The eolor and trajecrory of a hvperstreamline Qully repro<ent the loneitudinal cieenvector

finld and the cross-section encodes the two remaining transverse sigenvector Helds, Thns,
hyperstreamlines form a continuons representation of the whole rensor data along the ryajec-
rorv. Hvperstreamlines are called major. medivm. or winor depending on the loneitudinal
clezenvector field 79 that defines the trajectory,

Fionres Tand 2 illustrate the properties of hvpersteeamlines for two elastic stress Golds
inoacsemi-indinite steel solid. and are described in dvrail betow. The color seales Jor 1hese

and everv other tioure in this article are shown i Fle. 2.
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Fioure 1o Srress rensor induced by two compressive forces. Hyperstreamline traioerorios
ftopi minor tnbes. medium and major helices Ahottom s solenoidal property ol a minor
tibe frght). Color seale X of Fig, 2 is nsed.

.1 Trajectory of a hyperstreamline

Hyperstreamline trajectories correspond to Dickinson's tensor field lines 157 theze patterns
of lines <how. tor example. how forces propagate in a stress rensor lield. and how the
momentum is rransferred in a momentum flux density rensor field. Figure [{rop) illustrates
this phenomenon in an elastic stress tensor field induced by two compressive forces on
rhie top <urtace of the cube, The lines propagating upward are along the most compressive
divection  the minor cigenveetor T2 and converge towards the regions of high stress where
tho Dorees are appiied. Note the sudden divergence of cloze trajectories on each side of the
Dot of svimetrye Stilarlye trajectories along the rwo otlier eigenvectors delineate a
ncfaer shown wear the bortom face of the cube. This surface is evervwhere perpendicnlar

ro the most compressive direction,
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2.2 Cross-section of a hyperstreamline

i . v S, S .oh e o oy i N . I . e . .
oo o e vt chiaracterized by thie geometry of thelr crossosection, e, e
W e e e P et Yone tho tratectory, \We o LR Tyt .
DO R DT Ve T hal SWee s o Te tragectory, GOl e WG TV e oD B s
1

: " A , ‘
occveren i cvetehes into an edipge while sweeping and that aenerates oo v pert oo

e coned o fedhes and 20 o eross that eenerates o hyvperstremmline codled w Aefies Flooe

Uhortonm shows rwo minor tithes propagating npward as well as four mediom and ooor
Lefiees in the stress tensor field corresponding to Figo Litopr. Ina tabel the principal awes
of cach eliiptical cross-section are along the transverse eigenvectors and have a lenatl pro-
portional to the maenitnde of the transverse clgenvalues. The same properry holds for .
Lot whose arms are proportional 1o fie transverse elgenvectors helices owe their none
to the spirading pattern of their arms that can be observed In some cases). Tn thiz manner
both directional and amplitude information are encoded along the trajectory. The {oeal
sign of the rransverse eigenvalues can be detected by examining the singularities in the
cross-section of the hyperstreamline. [ndeed. the cross-section redices to a single Hne or o
point wherever one of the transverse eigenvaliues changes sien.

Tubes and belices encode the same information about the rensor field, but souie wspoers
of the data are hetter percelved with one hvperstreamline than with the other. Tubes, for
instance, show better where the tensor is degenerate in the transverse plane. since rocoo-
nizing that an ellipse is circular is easier than comparing the length of two perpendicular
line seamonrs<. Farrher, if the tensor field is transversely degenerate in a whole region of
space, hetices are not adequate since in this case the direction of the transverse eigenvectors
i~ not derermiined. Helices, on the other hand. provide better cues for perceiving preciselv
devdirections of the transverse eigenvecrors,

Conr different stages of a minor tube in a stress tensor field are displayed in Fig. 2. The
tensor Held i< stmilar ro that of Fig. 1 bue an additional tension force is added. In the 1op-
[ofr. the cross-section is circuliar, and the transverse stresses are equal in magnitude. 1The

top-right shows an increasing anisotropy of the transverse stresses together with a decrease

of the longitudinal eigenvalue teolor). In the bottom-lelt, the cross-section is reduced to

QMGINAL PAGE 1 b
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Ficure 20 Fonr different stages of a minor tiube in an elastic stress rensor field. Color <o
A s used,

a srraight line: one trausverse ecigenvalue is zero and the stresses are locallv 2-D. 1y
botram-right, the stresses are 3-D once again: the elgenvectors underco a rapid vens

dned o substantial sreetching which reveals an important gradient of shear and pros<am

Sl oo
Le rovion,

Degenerate and singular points. Computing hvperstreamlines is complicated bHoci-e
o [=] D .
degoneracies can occur along the trajectory at and in between the sampling points requestond

by the adaprive integration algorithm. We assume that the tensor field 1s smooth. el

the direction of the longitudinal eigenvector is not likely to vary by more than a usr

oredetined anale between two successive sampling points. unless the trajectory just cros o
docdegeneraey involving the longitudinal eigenvalue. Tu this cases we search for thie deweroraey
botween the last rwo sampling points and, if found. terminate the curve there. We canothen
jitnp the deeeneracy and contine integrating in a sefecred eigendirection. The poiurs where
the transverse eigenvalues vanish are also detected and included to the curve in order uor

+

to miss a singularity of the cross-section of the hyperstreamline.
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2.3 Solenoidal tenzor fields

. I D S AR SRR AN IS B RS DU R AR NN TR ST ;[ il e e 0 Lol [N . -
N [ Vo R e [ S Sl . : N
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Dollne theen togcenr nelds as o saolenondal b A{M[HQ\ with e e e R IR

A oveetor teld Tis called solenondal if 1 1s diveroence- oot
by
(REN
N oy
o or,
ximpres of <olenotdal veeror fields dnchide the vorticiny or the voloeine ta ono g

neompressible flows. Mirch of the straeture of solenoidal veertor felds cin b oxplained o
their property of having a constant flax inside astreamethe 71 the maanirade of = v
deld st hierease locally in regions where the streamlines converan rowards caclo i
decrease where the streamlines diveree from each othier.

By analoey, we define a rensor field U as <olenoidal 10100 <atishes

3 oy
M

et (‘I.I';

=1) 2

for b= 1203 which implies that the throe vector tields ahralned by wimmbiiplving U by oo
Hivee coustant orthogonal directions are <olenoidal.

Solenoidal tensor fields are not rare mathematical obiects, Theyv are findamental 1o
finid and solid-state mechanics. For example the stress tenszor m o in solids o rost iy
regions wlhere no external forces are applied) and the momentum flux density rensor 11
I gravity-free steadv-state fluid flows both satisiv Feun 2 and are solenoidal tensor felds
Cth assnmption of no gravity Is common practice swhen compnting aas flows Howevor,
the stress and viscous stress tensors in fhaid Hows are wor <olenoidal.

Hyperstreamlines of solenoidal tensor fields have & convergence/diveraence properts
analogons to the property of streamlines in solenoidal woctar fields. More prociselv it AL

—t)

the longitudinal eigenvalue of a hvperstreamline alone *he clgenvector 74 and it v !

V7 are the two transverse eigenvalues, Fgn. 2 s oquividenn o

! - Py - W [ ¥
AT = AT A e «,

Ve
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Figure 30 Rake of major tihes of the momentnm s density tensor in the 2ow oast an
ogive cviinder. Color <cate X of Fle. 2 s n<ed.

/
-1 [ AT X RN i 1 ot ! T - |
where AV ds the derivarive of the longitudinal ciaonvalne along the trajectory 50 KN o

Koare coometrie factors that are positive iU neiehinoring hvperstrenmiines alone = cone

verge in the corresponding transverse directions J oo o and necative otlierwisze,

the loneitndinal eigenvalue of a major Tivperstregmiie inereases during its propagarion
\'}/ ol ! ' 1 i

PATT s 00 weighboring major hypersrreamlines converee towards cach other. Ay diver-

aence i one fragsverse cigendirection mizst be compensated by a stronger converaence in 1

otber tronsverse claendirection. The opposite property Lolds teue for minor hvperstrenn-

Hess an ineressing lonaitadinal fminor eleenviine correlates with o adobal db

LEVeT2R e oy

nerelihoring rpoe hivperstreamlines. 1 iley converee Tnone ransverse viaendirection, ey

must diverae more stronedv in the other transver<e cicondincton, Converselv, o docronsie

h)ll%it‘l(fih:xi claenvig e (‘1)1'1'(‘\’[)()“(15 ra diveraine SR TI

2 Loperstrenmlines and conversing

ruinor hyperstronalines,

It follows. then. that encoding the longitndhnay ciceavidue into the color of a lvper-

streamline in a =olenoidal 1ensor tield gives nfornieion ahont the helavior of neieliboring

O XNAL PACE IS
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bvperstreamlines. The fignre at the beginning of this article illustrates this propertv for
nrajor tabes of the momentum flux density rensor in the flow past a hemisphere evlindor,
The decrease of the longitudinal eigenvalue (color) is accompanied by diverging trajectorios,

The tormer property explains why the minor hyperstreamlines in Fig. 1 converce to-
wards the applied forces (quickly decreasing longitudinal eigenvalue} and why the ma‘or
hyperstreamlines propagate mostly parallel to each other with an almost constant color.
A close view of the sudden divergence of minor hyperstreamlines on one side of the plane
of symmetry is given in Fig. 1{right). The local divergence of minor trajectories creates a
sudden increase of the longitudinal eigenvalue counterintuitive to the notion that the minor
eigenvalue should decrease uniformly when approaching one of the two applied compressive
forces.

Figure 3 shows a rake of major tubes of the momentum flux density tensor in the flow
past an ogive cylinder. The air flow comes in from a direction 5° to the left of the ogive axis
and vortices are created in the wake of the body. Major tubes that become entangled in the
vortices undergo a fast decrease in color while diverging from each other. In other regions
of the flow. the color is constant and in some places it even increases slightly from orange
to red. In these regions the apparent divergence of the tubes in the direction parallel to the
surface of the body is compensated by a stronger convergence in the perpendicular direction.
Both divergence and convergence exactly compensate each other in the tail between the two

vortices.
2.4 The reversible momentum flux density tensor

A specific example of fluid flow analysis illustrates how hyperstreamlines may be used to
correlate several different physical quantities. For the reversible part of the momentum
flux density tensor. II7, (see Table 1), one may correlate pressure p, velocity direction T,.
and kinetic energy density k [2]. Indeed, the major eigenvalue of 117 is A = p 4+ 2k and
the corresponding unit eigenvector is the velocity direction 1,. The other eigenvalues are

degenerate (A2 = A®) = p) in the whole space. It follows that only major tubes can be

10
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Figure 1: Reversible momentum flux density tensor in the flow past a hemisphere cvlinder.
Color scale A of Fig. 2 is used.

nsed. Their trajectory is everywhere tangent to the velocity direction T, and their cross-
section is circular, with a diameter proportional to the pressure p. The color of the tubes

is determined by the function

A _ g5 1 \O)
color ~ 2 ZOINTEA )y, (1)

which represents the kinetic energy density k. Thus, the trajectory, diameter, and color of
rhe major tubes encode the velocity direction, pressure and kinetic energy density, respec-
tively.

Figure t shows I}, in the flow past a hemisphere cylinder. The direction of the incoming
flow is 5° to the left of the hemisphere axis. The detachment at the end of the cvlinder is
clearly visible. The pattern of hyvperstreamlines indicates that the momentum is transferred
from the tip of the body to the end fairly uniformly with a globally decreasing kinetic energy
as shown by color variations. However, there is a sudden change of kinetic energy (color)
and pressure (diameter) associated with a significant variation of the direction of the first

five tubes.
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2.5 Color coding schemes

Usnally. color encodes the longitudinal eigenvalue in order to represent the whale 1on~or
data along rhe trajectory. In practice. the color coding scheme can be modified to roven]
other aspecrs of the data. An example is the color coding function of Eqn. + wlich ullows
decoupling of pressure and kinetic energy density when visualizing the reversible moment 1
transfers in a flow. For stresses in solids or viscous stresses in fluids, color can be nsed 1)
discriminate between compressive and tensile directions in the cross-section of a tnbe. This

is done by coloring the tube according to

-1

color ~ cos () Yy

where 2 is the angle between the normal 7 to the elliptical cross-section of a rube and
the force f = UT acting on it. Figure 5 represents the same minor tube as in Fig. 2. bur
colored according to Eqn. 5. Red corresponds to v = 0° and indicates that the corrrsponding
directions 7 are in pure tension. Blue indicates purely compressive directions (2 = 150° 1.
and green reveals pure shear (o = 90°).

When using the color function of Eqn. 5 for other tensor data, the meaning of compres-
sive and tensile directions is lost. However, this scheme encodes the sign of the transverse
cigenvalues: a principal direction of the elliptical cross-section is red if the corresponding

cigenvalue is positive, and blue otherwise.
3 Structural depiction of symmetric tensor fields

‘Two factors limit the practicality of hyperstreamlines: 1) the resulting display depends on
the initial conditions of integration and 2) a large number of hyperstreamlines produces
visual clutter. The same problems arise in 3-D scalar and vector fleld visualization. Tor
example. when visualizing a scalar field with isosurfaces, the final image depends on the
particular isosurfaces chosen and only a few of them cun be displaved simultaneously. Also.
the conventional streamlines used in vector field visualization lead to a display dependent

on the initial conditions of integration and the presence of too many streamlines clutters

12



Figure 5: The minor tube of Fig. 2 colored as a function of the normal force. Color scale B
of Fig. 2 is used.

the image. In the latter case. these problems are overcome by algorithms that extract
automatically the vector field topology [7. 3]. These algorithms can be seen as a way of
coding the collective behavior of a large set of vector streamlines. Analogous to these vector
techniques. a structural depiction of tensor data can be obtained by coding the collective
behavior of a large number of hyperstreamlines.

Consider the collection {H S} of hyperstreamlines propagating along the eigenvector

field 74! as given by Eqn. 1. Important features exist in both the trajectory and the cross-

section of these hvperstreamlines. For example, the locus
A =0

is the set of the critical points? in the trajectory the hyperstreamlines {HS™}. Further.
the surface

AIATR)Y —

?At a critical point of a vector field. the magnitude vanishes and the direction of the streamline is locally
undefined. See Ref. [9] for a complete discussion of this topic.

13
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Figure 6: Structural depiction of the stress tensor of Fig. 1.

where AU and A are the transverse eigenvalues. is the locus of points where the cross-
section of the hyperstreamlines {51V} is singular. i.e. is reduced to a straight line or a
point. In general, a surface of constant eccentricity is the locus of points where the cross-
section of each hyperstreamline in { H S} has the same shape, regardless of its orientation

and scaling. In particular, the locus
A L) —

is the set of points where the cross-section degenerates into a circle (zero eccentricity)?.

A structural depiction of the stress tensor of Fig. 1 is given in Fig. 6. The vellow surface
is the locus of critical points of the medium eigenvector T2} and the green surface represents
the critical points of the major eigenvector (). On both of these surfaces, the cross-section
of each minor tube (four of them are shown) reduces to a straight line. On the blue surface.
the transverse eigenvalues are opposite to each other and the cross-section is circular. Below
the vellow surface. both transverse eigenvalues are positive and every transverse direction

in the cross-section of the minor tubes is in tension. Above the vellow surface, the medium

"The locus X'/ + X' %" = 0 was omitted in Ref. [2].
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steenvalie becomes negative and some fransverse directions are in tension while orhers are

compressive. Inside the green surface. however. every transverse direction is in compression.
3.1 Stress and viscous stress tensors in fluid flows

Auother example of strucrural depicrion is given for the stress tensor 7, and the viscons
stress tensor of, in fluid flows. As shown in Table 1. these two tensors differ only bv an
lsotropic pressure component. implving that the unit eigenvectors of both tensor fields are
identical. However, the eigenvalues of ,; are equal to the eigenvalues of ¢/, minus a large
pressure component. Table | also shows that visualizing o/, is equivalent to visualizing the
rate-of-strain tensor €; in incompressible flows.

Hyperstreamlines of the stress tensor in the flow past a hemisphere cylinder are shown in
Fig. 7(top) (the flow is the same as in Fig. 4). The major tubes in front are along the least
compressive direction 7!, Their trajectory shows how forces propagate from the region in
front of the cylinder to the surface of the body. The cross-section of the tubes is circular.
indicating that the pressure component of the stresses is dominant, as expected. However.
the viscous stresses close to the body create a slightly anisotropic cross-section. On the
vellow surface. the eccentricity is equal to 10%.

The helices are along the medium eigenvector field. They propagate mainly parallel to
the cylinder surface and the orientations of their arms indicate a fairly constant direction
of the two transverse eigenvectors. The third helix exhibits a more complex behavior.
suggesting that the stress tensor is less uniform in the region of contact between the tubes
and the body than in other parts of the flow.

Figure 7(bottom) shows the viscous stress tensor o), in the same flow. As expected. the
trajectories are similar to those in Fig. 7(top), but removing the large isotropic pressure
contribution dramatically enhances the anisotropy of the cross-section of the tubes. The

surface corresponds to a constant eccentricity of 90% and is crossed twice by each tube.



Figure 7: Stress tensor (fop) and viscous stress tensor {bottom)in the flow past a hemispliere
cyvlinder. Color scale A of Fig. 2 is used.

4 Unsymmetric tensor fields

Hyperstreamlines are useful in visualizing symmetric tensor fields whose three eigenvector
ficlds T4 given by Eqn. 1 are real and orthogonal. However, visualizing wnsymmetric
3x3 tensor fields T = {Tx} is more difficult because their eigenvectors T are generallv
complex and not orthogonal. A 3-D vector field visualization technique, the stream polygon
(10}, can reveal aspects of vector field gradients. It does not apply, however, to other kinds
of unsymmetric data, and the tensor information, even for vector gradients. is only partially
rendered.

In this section, we show that it is always possible to decompose unsymmetric tensor data
into two components: a symmetric tensor field and a vector field. The symmetric tensor field
is visualized with hyperstreamlines as before. However, in order to represent the complete
(nnsymmetric) tensor information, we need to encode the additional vector field along the
trajectory. Depending of the physics involved, two reductions of the unsymmetric data are

possible: a symmetric / antisymmetric decomposition or a polar decomposition.
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1.1  Symmetric / antisymmetric decomposition

['he rensor field can be decomposed into the sum of svmmetric and antisvmmetvic conpo-

nents according to
T+ T T-T¢
T =

)

< -

-

where T is the transpose of T. The antisvmmetric tensor has only three independon:
components that form a vector known as the arial vector [1. 1L, For instance, the veiocity
gradient in fluids is the sum of the rate-of-strain tensor ¢y [svinmetric) and the rareof-
rotation tensor (antisymmetric) which is half the vorticity vector.

Figure 9(top) shows aline tensor icon for unsymmetric data based on this decomposition.
A hyperstreamline is integrated along one eigenvector field 7% of the svmmetric tensor
component and is color coded either according to the longitudinal eigenvalue or as in Fqu.
5. An additional ribbon is added outside of the tube surface in order to represent the
axial vector. The ribbon position and width encode locally the vector component which is
perpendicular to the trajectory. The color of the ribbon maps the angle between the axial
vector and the direction of propagation of the tube according to color scale B of Fig. 2 ired

is parallel. green is perpendicular, and blue is antiparallel). [n Fig. 9(top) for example,

color shows that the vector field is everywhere close to alignment with the direction of

propagation. It is, however, not exactly aligned since the ribbon has a finite width.
When visualizing the velocity gradient in fluid flows. this icon shows the position of the
vorticity with respect to the principal strains, which is an important factor for understanding

turbulence [12].
4.2  Polar decomposition

An alternative reduction of the unsymmetric data is the polar decomposition [11]. which is
a generalization to tensors (or matrices in general) of the usnal decomposition of a complex
number into the product of an amplitude and a phase. Assume as in Fig. 8 that the tensor
T at a given point T maps the vertices of a cube from an initial state to a final deformed

state. This global deformation can be decomposed into more elementary transformations.
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T
Q Q

Figure 8: Polar Decomposition of nnsvmmetric data.

For example, one can first stretch the cube by a tensor U and then rotate the stretched
rhomboid by an isometric transformation Q in order to reach the final state. Alternative!y.
one can first rotate the cube and then stretch it by the tensor V.

Mathematically, these are two equivalent ways of decomposing the unsymmetric dara
iuto the product of a stretch tensor U or V {the amplitudes) with an isometric transforia-
tion Q (the phase):

T=QU =VQ [45)

where both U = VT!T and V = VTT? are symmetric positive definite tensors, i.e. svm-
metric tensors having real and positive eigenvalues. and Q = TU~! is an orthogonal tensor.
[t can be shown [L1] that this decomposition is wnique wherever det T # 0, i.e. there is «
one-to-one correspondence between the matrix T and the set of matrices {Q. U. V}. We
will explain below how we handle points where det T = 0. [rom now on. we restrict our
discussion to the first decomposition in Eqn. 6 withourt loss ol generality,

Figure 9(bottom) shows a line tensor icon for T based on this decomposition. The
symmetric tensor U is represented by a tube along oue of its eigenvectors. In regions where

det T > 0, the isometric tranformation Q is simply a rotation and is characterized byv an
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Figure 9: Examples of line tensor icons for two different unsymmetric tensor fields: symmet-
ric / antisvinmetric decomposition (top) and polar decomposition {bottom). Color scales \
and B of Fig. 2 are used for tubes and ribbons respectively.

angle # (0 < # < 7) and a unit axis of rotation 7. Thus. Q can be represented by the vector
T =T
However. a rotation of angle # about the axis 7 is physically identical to a rotation of angle

27 — 8 about the axis —%. Thus. Q is also equivalent to the vector

T3 = (27 - 93(~-7)

To visualize Q. two ribbons are added that represent the vecrors 71 and 72, respectively,
Note that in regions where det T < 0. the transformation Q involves an additional inversion
in the direction of the rotation axis. .. row of white pearls across the ribbons marks the onset

of the inversion during the propagation. and a row of black pearls indicates its cancellation.

Singular points. In some points of the trajectory. the vectors 7! and 72 may not

be defined. We then simply interpolate them between adjacent points in order to uvoid

1Y



dizcontinnities in the ribhons. These singnlar points ocenr a) at the pearls where det U =
der T = 0 U i detined bat nor inverrible and Q can not be computedi and b) where
Q reduces to phis or minus the identity matrix (the roration axis 7 is undefined and T ix
locally svinmerrie with all eigenvalies having the same sign ). Thus, the assumption is rhat
<ingnlarities are i=olated points along the trajectories. This approach fails onlyv if there iz
an entire subvoiume where condition a) or b) occur. [n the latter case. however. simple

hyvperstreamlines are nuseful since rhe data is svmmetric.

5 Conclusions

The wealth of information contained in second order tensor data is extracted and rendered
as hyvperstreamlines. By representing continuously both the amplitude and the directional
information tvpical of tensor data. hvperstreamlines reveal much of the phvsics involved
in complicated processes that are otherwise onlv partially visualized in terms of vector
or scalar functions. Hyvperstreamlines are the simplest continuous tensor structures that
can be extracted from symmetric or unsymmetric tensor fields. and coding their collective
behavior is a first step in obtaining a structural depiction of tensor fields analogous to
extracting vector field topology. Future work must be carried out to obtain more advanced
structural depictions. To this aim. it might be necessary to focus on specific tensors each at
a time and to use the known underlying physics and the resulting tensor properties within

the framework of this article.
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